Abstract Submitted for the MAR10 Meeting of The American Physical Society

Transport in line junctions of $\nu = 5/2$ **quantum Hall liquids**¹ CHENJIE WANG, DIMA FELDMAN, Physics Department, Brown University — We calculate the tunneling current through long line junctions of a $\nu = 5/2$ quantum Hall liquid and i) another $\nu = 5/2$ liquid, ii) an integer quantum Hall liquid and iii) a quantum wire. Momentum resolved tunneling provides information about the number, propagation directions and other features of the edge modes and thus helps distinguish several competing models of the 5/2 state. We investigate transport properties for two proposed Abelian states: K = 8 state and 331 state, and four possible non-Abelian states: Pfaffian, edge-reconstructed Pfaffian, and two versions of the anti-Pfaffian state. We also show that the non-equilibrated anti-Pfaffian state has a different resistance from other proposed states in the bar geometry.

¹This work was supported by the NSF under Grant No. DMR-0544116 and BSF under Grant No. 2006371.

Chenjie Wang Physics Department, Brown University

Date submitted: 07 Nov 2009

Electronic form version 1.4