MAR10-2009-000347

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Anisotropic London Penetration Depth in Iron-based Pnictide Superconductors

RUSLAN PROZOROV, Ames Lab and Iowa State University

The temperature dependent London penetration depth, $\lambda(T)$, is linked directly to the structure of the superconducting gap, thus providing valuable insight into the pairing mechanism. I will summarize measurements of the penetration depth in single crystals of iron-based pnictide superconductors comparing the "1111", "11" and "122" families. Compatibility of our results with other gap sensitive probes, such as ARPES and thermal conductivity, will be addressed. A detailed discussion of the doping dependent penetration depth will be given for the well-characterized "122" family, $(Ba_{1-u}K_u)(Fe_{1-x}T_x)_2As_2$ (T=Co, Ni, Pd, Rh). Overall, $\lambda(T)$ exhibits a power law variation at low temperatures, $\lambda(T) = \lambda(0) + bT^n$ (down to 80 mK in the case of FeNi-122). The exponent n is typically less than 2.8, which is clearly different from $n \approx 4$ that parameterizes the exponential behavior expected for conventional fully gapped s-wave superconductors. The low-temperature parameters, $\lambda(0)$, b and n depend on the doping level and the orientation of a magnetic field with respect to the crystal axes. This evolution is best observed in the out-of-plane penetration depths, $\lambda_c(T)$, which at least in the FeNi-122 system, changes from a high power in the underdoped regime to T-linear in overdoped samples. Simultaneously, the in-plane penetration depth, $\lambda_{ab}(T)$, evolves towards a sub-quadratic behavior with $n \approx 1.7$. Furthermore, analysis of the superfluid density in the full temperature range is consistent with two-gap superconductivity. However, the temperature dependencies of the anisotropies, λ_c/λ_{ab} and ξ_{ab}/ξ_c , are opposite compared to another two-gap superconductor, MgB₂. Consistency of these results with theories that explain the power law behavior to be due to scattering in a two-dimensional s_{\pm} model will be discussed. Overall, our results suggest that the superconducting gap in iron-based pnictide superconductors develops nodal structure in the overdoped regime with nodes located at finite k_z wave vectors on a three-dimensional Fermi surface.

References: C. Martin *et al.*, Phys. Rev. Lett. **102**, 247002 (2009); R. T. Gordon *et al.*, Phys. Rev. Lett. **102**, 127004 (2009); R. T. Gordon *et al.*, Phys. Rev. B **79**, 100506(R) (2009)