A Quantized Metric As an Alternative to Dark Matter

JOEL MAKER, None — The cosmological spherical symmetry background metric coefficient \(g_{44} \equiv g_{00} = \frac{1-2GM/c^2r}{r} \) should be inserted into a Dirac equation
\[
\sum_\mu \left(\sqrt{g_{\mu\mu}} \gamma^\mu \partial_\mu \psi \right) - \omega \psi = 0 \quad (1, \text{Maker})
\]
to make it generally covariant. The spin of this cosmological Dirac object is nearly unobservable due to inertial frame dragging and has rotational \(L(L+1) \Delta \varepsilon \) and oscillatory \(\varepsilon \) interactions with external objects at distance away \(r >> 10^{10} \text{LY} \). The inside and outside frequencies \(\omega \) match at the boundary allowing the outside metric eigenvalues to propagate inside. To include the correct 3 lepton masses in this Dirac equation we must use ansatz \(g_{00} = e^{i(2\varepsilon + \Delta \varepsilon)} \) with \(\varepsilon = .06, \Delta \varepsilon = .00058 \). For local metric effects our ansatz is \(g_{00} = e^{i\Delta \varepsilon} \). Here the metric coefficient \(g_{00} \) levels off to the quantized value \(e^{i\Delta \varepsilon} \) in the galaxy halo: \(g_{00} = 1-2GM/rc^2 \rightarrow \) rel(\(e^{i\Delta \varepsilon} \)) = cos(\(\Delta \varepsilon \)) = 1-(\(\Delta \varepsilon \))^2/2 \rightarrow (\(\Delta \varepsilon \))^2/2 = 2GM/rc^2 for this circular motion \(v^2/r = GM/r^2 = c^2(\Delta \varepsilon)^2/4r \rightarrow v^2 = c^2(\Delta \varepsilon)^2/4 \approx \)87km/sec \(\approx 100 \text{km/sec} \). Thus differences in \(v \) are proportional to \(L \), \(L \) being an integer. Therefore \(\Delta v = kL \) so \(v = 1k, v = 2k, v = 3k, v = 4k, \ldots \) \(v = N \) (the above \(\sim 100 \text{km/sec} \)) with dark matter then not required to give these high halo velocities. Recent nearby galaxy Doppler halo velocity data strongly support this velocity quantization result.

Joel Maker
None

Date submitted: 09 Nov 2009