Nonlinear electron transport in quantum wires

DANHONG HUANG, USAF Research Lab, Space Vehicles Directorate, GODFREY GUMBS, Hunter College, CUNY — When impurity and phonon scattering coexist, the Boltzmann equation has been solved exactly for nonlinear electron transport in a quantum wire. The scattering effects on mobilities of electrons as functions of temperature and dc field were demonstrated. For the non-differential mobility of electrons, it is switched from a linearly increasing function of temperature to a parabolic-like temperature dependence as the quantum wire is changed from an impurity-dominated system to a phonon-dominated one. A maximum has also been obtained in the dc-field dependence of the differential mobility of electrons. The low-field mobility is dominated by the impurity scattering, whereas the high-field mobility is limited by the phonon scattering. As a quantum wire is dominated by elastic scattering, the peak of the momentum-space distribution function becomes sharpened and both tails of the equilibrium electron distribution centered at the Fermi edges are raised by the dc field after a redistribution of the electrons is fulfilled in a symmetric way. If a quantum wire is dominated by inelastic scattering, on the other hand, the peak of the momentum-space distribution function is unchanged while both shoulders centered at the Fermi edges shift leftward correspondingly with increasing dc field through an asymmetric redistribution of the electrons.

DanHong Huang
USAF Research Lab, Space Vehicles Directorate

Date submitted: 12 Nov 2009
Electronic form version 1.4