Abstract Submitted for the MAR10 Meeting of The American Physical Society

The Significance of Edge-Barrier Pinning in Superconducting Bridges PAUL BARNES, WESLEY JONES, MATTHEW MULLINS, FRAN-CISCO BACA, TIMOTHY HAUGAN, Air Force Research Laboratory — Edgebarrier pinning in thin superconducting films provides additional pinning over that of the bulk pinning. When using bridges greater than 1 μ m to determine the critical current density (J_c) of films, this additional pinning is typically ignored. However, theoretical and experimental data presented here indicate that this pinning enhancement is non-negligible with bridge widths of less than 100 μ m and on par with the bulk pinning at a few microns. In the present study, bridges in YBa₂Cu₃O_{7- δ} (YBCO) thin films were repeatedly narrowed to avoid issues of sample to sample variation. Bridge widths starting at 500 μ m and 50 μ m were patterned by photolithography with subsequent narrowing performed by photolithography and focused ion beam milling, respectively. Transport J_c was determined after each bridge size. Theoretical analysis follows that of J.R Clem [e.g. Elistratov et al, Phys. Rev. B 66, 220506 (2002)]. Theoretical implications of the narrow bridge effect on $J_c(H)$ and $J_c(T)$ plots are not simple scalar changes. Based on these results presented here, two key points are: 1) J_c data comparison among institutions using different bridge sizes can provide improper conclusions (similarly as not accounting for film thickness), and 2) the $J_c(T)$ and $J_c(H)$ curve shapes are skewed differently for different widths. The implication of these effects will be discussed.

> Paul Barnes Air Force Research Laboratory

Date submitted: 12 Nov 2009

Electronic form version 1.4