Abstract Submitted for the MAR10 Meeting of The American Physical Society

Ferromagnetism in perovskites $Sr_{1-x}Pb_{x}RuO_{3}$ ($0 \le x \le 1$) J.-G. CHENG, J.-S. ZHOU, J.B. GOODENOUGH, TMI, University of Texas at Austin, Y. REN, Y.J. FENG, APS, Argonne National Lab — Orthorhombic SrRuO₃ is a well-known metallic ferromagnet with $T_c \approx 165 \text{ K}^{.1}$ We have demonstrated that a complete solid solution of the orthorhombic perovskites $Sr_{1-x}Pb_{x}RuO_{3}$ can be made with high-pressure synthesis. Whereas the ground state for the whole series remains metallic, the Pb substitution reduces the Curie temperature and eventually ferromagnetic phase is totally suppressed at $x \approx 0.5$. Moreover, an unusual lowtemperature phase with the Imma space group is developed through a first-order transition below T_t ≈ 90 K in the orthorhombic PbRuO₃. Based on physical properties measurements on a small grain of the high-pressure product $PbRuO_3$, we have shown that the transition at T_t is a metal-metal transition. T_t is suppressed below 10 K under high pressure 3GPa as verified by the structural study with a diamond anvil cell with synchrotron radiation. Suppression of ferromagnetism in this system can be attributed to the hybridization of the Pb^{2+} 6s electrons with the Ru 4d electrons that broadens the Ru 4d band. ¹ G. Cao, et al., Phys. Rev. B 56, 321 (1997). ²S. A. J. Kimber, et al., Phys. Rev. Lett. **102**, 046409 (2009). ³J.-G. Cheng, et al., Phys. Rev. B, in press.

> Jinguang Cheng TMI, University of Texas at Austin

Date submitted: 12 Nov 2009

Electronic form version 1.4