Evolving towards the optimal path to extinction in stochastic processes1 ERIC FORGOSTON, U.S. Naval Research Laboratory, SIMONE BIANCO, LEAH SHAW, College of William and Mary, IRA SCHWARTZ, U.S. Naval Research Laboratory — A large, rare stochastic fluctuation can cause an epidemic or a species to become extinct. In large, finite populations, the extinction process follows an optimal path which maximizes the probability of extinction. We show theoretically that the optimal path also possesses a maximal sensitivity to initial conditions. As a result, the optimal path emerges naturally from the dynamics and may be characterized using the finite-time Lyapunov exponents. Our theory is general, and is demonstrated with several stochastic epidemiological models.

1Research supported by the Office of Naval Research, the Air Force Office of Scientific Research, and the National Institutes of Health.