Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Studying the formation of different phases of self-assembled cross-linked F-actin

LAM T. NGUYEN, MARTECH, Physics Dept., Florida State University, WEI YANG, Chemistry and Biochemistry Dept., Florida State University, LINDA S. HIRST, School of Natural Sciences, University of California, Merced — Self-assembly of the system of F-actin and different linking proteins is studied using complementary methods of confocal microscopy, small angle x-ray scattering (SAXS) and molecular dynamics (MD) simulations. Studies using alpha-actinin (as a cross-linker) show that, by varying the actin concentration (C_A) and α-actinin to actin molar ratio (γ) the assembled system might fall in one of three different phases: (1) loosely connected network of F-actin and bundles, (2) strongly connected and homogeneous network of bundles, and interestingly, (3) loosely connected and inhomogeneous network of dense domains – an intermediate phase between the first two. The phenomena can be explained statistical mechanically and replicated using our MD simulations. Further understanding based on simulations with different types of cross-linkers shows that the formation of different phases is related to the flexibility in binding between F-actin and cross-linkers, which leads to the possibility of forming branching points and thus bundle networks.

This research is supported by MARTECH at Florida State University and by the National Science Foundation Biomaterials Program (DMR-0745786).

Lam Nguyen
Florida State Univ

Date submitted: 13 Nov 2009