Polymer dynamics during capillary flow into nanopores

ANATOLI SERGHEI, THOMAS P. RUSSELL, University of Massachusetts Amherst — Ordered arrays of parallel cylindrical nanopores (with a narrow pore size distribution and diameters down to 10 nm) are used as measurement platforms in the field of polymer nano-fluidics, in particular, to investigate the capillary flow of polymers in 2D geometrical nano-confinement. Several aspects of the polymer dynamics – manifested on time scales covering more than 10 orders of magnitude – are investigated during the flow process: (i) molecular fluctuations corresponding to the segmental dynamics (dynamic glass transition), (ii) chain dynamics, as revealed – for the case of type-A polymers – in fluctuations of the end-to-end distance, (iii) velocity of the capillary flow in dependence on the diameter of the nanopores. The results are compared to the polymer dynamics in the bulk.