Soft X-Ray Microscopy: Imaging Magnetism at Small Sizes

PETER FISCHER, CXRO/LBNL

The manipulation of spins on the nanoscale is of both fundamental and technological interest. In spin based electronics the observation that spin currents can exert a torque onto local spin configurations which can e.g. push a domain wall has stimulated significant research activities in order to provide a fundamental understanding of the physical processes involved. Magnetic soft X-ray microscopy is a unique analytical technique combining X-ray magnetic circular dichroism (X-MCD) as element specific magnetic contrast mechanism with high spatial and temporal resolution. Fresnel zone plates used as X-ray optical elements provide a spatial resolution down to currently <12nm [1] thus approaching fundamental magnetic length scales such as the grain size [2] and magnetic exchange lengths. Images can be recorded in external magnetic fields giving access to study magnetization reversal phenomena on the nanoscale and its stochastic character [3] with elemental sensitivity [4]. Utilizing the inherent time structure of current synchrotron sources fast magnetization dynamics with 70ps time resolution, limited by the lengths of the electron bunches, can be performed with a stroboscopic pump-probe scheme. In this talk I will review recent achievements with magnetic soft X-ray microscopy with focus on current induced wall [5] and vortex dynamics in ferromagnetic elements [6]. Future magnetic microscopies are faced with the challenge to provide both spatial resolution in the nanometer regime, a time resolution on a ps to fs scale and elemental specificity to be able to study novel multicomponent and multifunctional magnetic nanostructures and their ultrafast spin dynamics.

References

1This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy.