Magnetic Properties of the quasi-2D S=1/2 Heisenberg antiferromagnet \([\text{Cu(pyz)}_2(\text{HF}_2)]\text{PF}_6\)

SERGEI ZVYAGIN, Dresden High Magnetic Field Laboratory (HLD), FZ Dresden-Rossendorf, Dresden, Germany, E. ČIŽMÁR, Centre of Low Temperature Physics, P.J. Šafarik University, Košice, Slovakia, R. BEYER, M. UHLARZ, M. OZEROV, Y. SKOURSKI, J. WOSNITZA, Dresden High Magnetic Field Laboratory (HLD), FZ Dresden-Rossendorf, Dresden, Germany, J.L. MANSON, Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA, J.A. SCHLUETER, Materials Science Division, Argonne National Laboratory, Argonne, IL, USA — We report on electron spin resonance, high-field magnetization, and specific-heat studies of \([\text{Cu(pyz)}_2(\text{HF}_2)]\text{PF}_6\)

single crystals, identified as a quasi-two-dimensional spin-1/2 Heisenberg antiferromagnet. Our measurements revealed

\[J_{\text{inter}}/J_{\text{intra}} \leq 0.063 \quad \text{and} \quad A/J \sim 0.003 , \]

where \(J_{\text{inter}}, J_{\text{intra}}, J \) are the interplane, intraplane and mean exchange interactions, respectively, and \(A \) is the anisotropy constant. It is argued that the magnetic properties of this material (including high-magnetic-field magnetization and the temperature-field phase diagram) are strongly affected by two-dimensional spin fluctuations, despite of onset of 3D long-range magnetic ordering at \(T_N \approx 4.4 \) K.

The ESR magnetic excitation spectrum in the 3D ordered phase is studied in detail.