Spin relaxation of Mn + h complexes in III-V semiconductors
TOMASZ DIETL¹, CEZARY SLIWA, Institute of Physics, Polish Academy of Sciences — Splitting between heavy and light hole levels is known to result in long spin relaxation times of holes confined in compressively strained InAs quantum dots [1]. We show theoretically that T_1 can be elongated by orders of magnitudes if the hole resides on a Mn acceptor, as the $p-d$ exchange interaction introduces a magnetic anisotropy barrier for spin relaxation. In order to compare the magnitudes of thermally activated over-barrier spin relaxation with a competing non-stationary quantum tunnelling at level anticrossings we evaluate also the expected magnitude of the ground state splitting by various intrinsic and extrinsic effects, including random in-plane strains. The relevance of our results for optical [2] and transport studies [3] of Mn-containing InAs quantum dots and quantum wells, respectively is examined and shown to elucidate the origin of the observed anisotropies and hystereses.

¹also, Institute of Theoretical Physics, University of Warsaw

Tomasz Dietl
Institute of Physics, Polish Academy of Sciences

Date submitted: 16 Nov 2009

Electronic form version 1.4