Abstract Submitted for the MAR10 Meeting of The American Physical Society

First-principles study of charged vacancies in PbTiO3¹ YANPENG YAO, HUAXIANG FU, University of Arkansas — First-principles calculations within local density approximation (LDA) are performed to study the vacancy formation energies for charged vacancies in PbTiO₃. Within the constraint of thermodynamic limit, the chemical potential and Fermi energy dependence of the vacancy formation energy, as well as the transition energy levels, are studied. We found that: (i)the Formation energy of V_O^{2+} is much lower than that of the neutral oxygen vacancy, irrespective of μ_O ; (ii) Under oxygen rich condition, the main defect is V_{Pb}^{2-} ; (iii) When oxygen is deficient, either V_{Pb}^{2-} or V_O^{2+} can form, depending on the Fermi energy level; (iv) At certain condition, both V_{Pb}^{2-} and V_O^{2+} have similar formation energy, and can coexist.

¹This work is supported by the Office of Naval Research.

Yanpeng Yao University of Arkansas

Date submitted: 16 Nov 2009

Electronic form version 1.4