Abstract Submitted for the MAR10 Meeting of The American Physical Society

Anomalous magnetic moment suppression in the superconducting and ferromagnetic coextistence region in $Pr_{1-x}Nd_xOs_4Sb_{12}$ ¹ P.-C. HO, Physics Dept./Calif. State U., Fresno, D.E. MACLAUGHLIN, Physics & Astronomy Dept./U. Calif., Riverside, L. SHU, Physics Dept./U. Calif., San Diego, S. ZHAO, J.M. MACKIE, Physics & Astronomy Dept./U. Calif., Riverside, M.B. MAPLE, Physics Dept./U. Calif., San Diego, T. YANAGISAWA, Hokkaido U. — A previous study [1] of the effect of the ferromagnetism (FM) on unconventional superconductivity (SC) in $Pr_{1-x}Nd_xOs_4Sb_{12}$ found that SC and FM are both suppressed toward a critical concentration $x_{cr,1} \sim 0.6$, and the x dependence of the upper critical field H_{c2} has a curvature break at $x_{cr,2} \sim 0.3$. The specific heat measurements indicate that FM extends into the SC region. In order to probe the FM in the SC-FM coexistence region, μ -SR measurements are performed on the samples near $x_{cr,1}$ (x = 0.55, 0.5, and 0.45). A small quasistatic field ~ 40 Gauss was found in the field cooled state of these samples $(H = 10 \,\text{Oe})$ and this field is corresponding to a frozen Nd moment of $\sim 0.1 \,\mu_B$, which is much smaller than the CEF ground state moment of the Nd³⁺ ion (~ 1.36 μ_B). The origin of the moment reduction in Pr_{1-x}Nd_xOs₄Sb₁₂ is unclear currently. The Kondo effect, which is usually involved in such a reduction, has never been observed in Nd-based materials. [1] Ho, et. al., 2009 APS March Meeting, A41.00005 (2009); manuscript in preparation (2009).

¹Research at CSU-Fresno is supported by RC CCSA #7669 and the start-up fund; at UCR by NSF#0801407; at UCSD by NSF#0802478 and US DOE DE FG02-04ER46105; at Hokkaido U by MEXT, Japan.

Pei-Chun Ho Calif. State U., Fresno

Date submitted: 04 Jan 2010

Electronic form version 1.4