Abstract Submitted for the MAR10 Meeting of The American Physical Society

Structural signature of jamming transition¹ NING XU, Department of Physics, University of Science and Technology of China — In thermal amorphous systems, the first peak of the pair correlation function q(r) reaches the maximum height g_1^{\max} at a crossover volume fraction ϕ_v when the volume fraction ϕ is varied. In the T=0 limit, ϕ_v approaches ϕ_c , the critical volume fraction of the T=0 jamming transition, accompanied by a diverging g_1^{max} . The occurrence of g_1^{max} at T>0 thus reminisces the T=0 jamming transition. By measuring typical quantities such as the pressure, bulk modulus, shear modulus, and characteristic frequency of the boson peak, which all show power law scalings with $\phi - \phi_c$ in marginally jammed solids at T=0, we observe that $\phi=\phi_v$ separates the thermal amorphous systems into two regimes with distinct material properties: these quantities show similar power law scalings with $\phi - \phi_c$ to marginally jammed solids when $\phi > \phi_v$, which break down when $\phi < \phi_v$. Therefore, the occurrence of g_1^{max} signifies the jamming transition at T > 0. Because the scalings are manipulated by ϕ_c , the T = 0 jamming transition should be the only critical point that controls the jamming transition and properties of jammed solids at T > 0.

¹Supported by Hong Kong Research Grants Council (Grant No. CUHK 400708).

Ning Xu Department of Physics, University of Science and Technology of China

Date submitted: 16 Nov 2009 Electronic form version 1.4