Quantum Size Effects in the Properties of Non-Magnetic Americium-I (0001) Surface: A Hybrid DFT Study

RAYMOND ATTA-FYN, ASOK RAY, Physics Department, The University of Texas at Arlington — Hybrid density functional theory (HDFT) and a periodic slab model (up to nine layers thick) have been used to study the surface properties and electronic structure of non-magnetic Americium-I (0001) surface. The work function and surface energy of the semi-infinite surface is predicted to 3.45eV and 1.09 J/m² respectively. The surface properties, namely the surface energy, work function, and slab incremental energy exhibit no variations after five layers. A five layer slab is thus predicted to accurately model the adsorbate-induced changes in the surface properties of Americium-I (0001). The electronic structure is in excellent agreement with recent photoemission spectroscopy data. A layer-by-layer examination 5f electron localization using the thickest slab clearly indicates that the 5f electrons are localized on each layer and the nature of the localization is independent of the local geometry indicating that there is no variation in the 5f electron localization at the surface and in the bulk region.

1This work is supported by the U. S. Department of Energy and the Welch Foundation.

Raymond Atta-Fynn
Physics Department, The University of Texas at Arlington

Date submitted: 17 Nov 2009