Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene

HONGKI MIN, Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6202, ALLAN H. MACDONALD, Department of Physics, University of Texas at Austin, Austin TX 78712 — Recently, experiments have demonstrated that the conductivity per layer in multilayer graphene has the universal value $\sigma_{uni} = (\pi/2) e^2/h$ in the optical frequency range. We show that the origin of the universal optical conductivity in normal N-layer graphene multilayers is an emergent chiral symmetry which guarantees that $\sigma(\omega) = N\sigma_{uni}$ in both low and high frequency limits. In the intermediate frequency regime, the optical conductivity shows qualitatively different trends depending on the stacking sequence; thus, the optical conductivity measurement can provide a convenient qualitative characterization of multilayer graphene stacks.

1This work has been supported by the Welch Foundation, by the SWAN NRI program, by the NSF under grant DMR-0606489, and by the NIST-CNST/UMD-NanoCenter Cooperative Agreement.