Abstract Submitted for the MAR10 Meeting of The American Physical Society

Characterization of Soluble Anthradithiophene Derivatives¹ BRAD CONRAD, CALVIN CHAN, National Institute of Standards and Technology, MARSHA LOTH, JOHN ANTHONY, University of Kentucky, DAVID GUNDLACH, National Institute of Standards and Technology — We will discuss the growth and electrical measurements of a newly developed, partially fluorinated anthradithiophene (F-ADT) derivative with tert-butyldiphenylsilyl (TBDMS) side groups. Single crystals of the material can be readily grown and device hole mobility is shown to exceed 0.05 cm²/Vs with on/off ratios of 10⁷. F- TBDMS ADT is also observed to be readily soluble with films spun cast onto surface treated SiO₂ displaying a mobility >0.002 cm²/Vs. These electrical measurements will be correlated with growth, morphology, and the performance of related F-ADT derivatives.

¹This work is supported by the National Research Council Postdoctoral Fellowship at National Institute of Standards and Technology.

Brad Conrad National Institute of Standards and Technology

Date submitted: 18 Nov 2009 Electronic form version 1.4