Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Physical properties from \(\text{Na}_{24}\text{Si}_{136} \) single crystals\(^1\) M. BEEKMAN, Department of Physics, University of South Florida, W. SCHNELLE, M. BAITINGER, H. BORRMANN, K. MEIER, Max-Planck-Institut fur Chemische Physik fester Stoffe, A. DATTA, Department of Physics, University of South Florida, YU. GRIN, Max-Planck-Institut fur Chemische Physik fester Stoffe, G.S. NOLAS, Department of Physics, University of South Florida — The first investigation of intrinsic physical properties from single crystals of a \(\text{Na}_x\text{Si}_{136} \) \((0 \leq x \leq 24)\) member is reported. Clathrate-II \(\text{Na}_{24}\text{Si}_{136} \) specimens were prepared by a novel method employing spark plasma treatment of the precursor \(\text{Na}_4\text{Si}_4 \). The magnitude and temperature dependence of the electrical and thermal transport is understood in the context of metallic conduction, while magnetic susceptibility data indicate sharp features in the electronic density of states near the Fermi level. An Einstein-like vibrational mode that can be attributed to Na guest “rattling” is clearly observed through a pronounced contribution to the heat capacity, and explains the exceptionally large atomic displacement parameter for Na obtained from single crystal X-ray diffraction data. The experimental data are in very good agreement with prior electronic structure calculations.

\(^1\)This work is supported by the U.S. Department of Energy under Grant \# DE-FG02-04ER46145.

George Nolas
Department of Physics, University of South Florida

Date submitted: 18 Nov 2009

Electronic form version 1.4