Abstract for an Invited Paper for the MAR10 Meeting of The American Physical Society

Coherent spin dynamics in organic electronic devices JOHN LUPTON, University of Utah

Organic semiconductors, such as pi-conjugated polymers, offer exciting opportunities for the development of novel device architectures. While much of the earlier work has focused on exploiting the unique processing conditions of these materials – solution-based, flexible plastics – organic electronics also provides access to a range of physical parameters not found in many inorganic systems. The spin-degree of freedom is particularly intriguing in organic semiconductors, which are characterized by weak spin-orbit coupling and medium to strong hyperfine interactions. Primary photoexcitations exhibit strong (~0.7 eV) exchange interactions, leading to phosphorescent triplet states shifted to lower energy with respect to the singlets [1]. Organic semiconductors exhibit strong magnetic field dependencies in charge carrier recombination and transport, and concomitantly in conductivity [2,3], which generally indicate extremely weak spinlattice relaxation [2]. Spin dephasing is also very slow, so that spin excitations maintain phase coherence over timescales in excess of microseconds. This phenomenon allows the observation of time-domain spin Rabi flopping in the device current, by exploiting the technique of electrically-detected magnetic resonance [4]. Most recently, spin beating due to the coherently-coupled nutation of electron and hole spins has been observed, providing a direct visualization of hyperfine coupling. Coherent organic spin electronics may ultimately lead to new device concepts besides providing a deeper understanding of fundamental material properties, which are crucial to minimizing degradation.

- [1] PRL 89, 167401 (2002).
- [2] Nature Mat. 4, 340 (2005).
- [3] Nature Mat. 7, 598 (2008).
- [4] Nature Mat. 7, 723 (2008).