An exact solution to the problem of spin edge states1 SAMVEL BADALYAN, Department of Physics, University of Regensburg, 93040 Regensburg, Germany and Department of Radiophysics, Yerevan State University, Armenia, VAHRAM GRIGORYAN, Department of Radiophysics, Yerevan State University, 1 A. Manoukian Street, 375025 Yerevan, Armenia, ALEX MATOS ABIAGUE, Department of Physics, University of Regensburg, 93040 Regensburg, Germany —

We study the spin edge states, induced by the combined effect of spin-orbit interaction $\Delta SOI\Theta$ and hard-wall confining potential, in a two-dimensional electron system, exposed to a perpendicular magnetic field. We find an exact solution of the problem and show that the spin-resolved edge states are separated in space. The SOI-generated rearrangement of the spectrum results in a peaked behavior of the net-spin current versus the Fermi energy. The predicted oscillations of the spin current with a period, determined by the SOI-renormalized cyclotron energy, can serve as an effective tool for controlling the spin motion in spintronic devices.

1We acknowledge support from EU under Grant No. PIIF-GA-2009-235394 and ANSEF under Grant No. PS-1576.