Abstract Submitted for the MAR10 Meeting of The American Physical Society

High-temperature crystal structures and chemical modifications in RbH₂PO₄ RONALD J. TACKETT, HEBER MARTINEZ, RUSSEL R. CHI-ANELLI, University of Texas at El Paso, JIANZHONG ZHANG, YUSHENG ZHAO, Los Alamos National Laboratory, CRISTIAN E. BOTEZ, University of Texas at El Paso — We have used labortatory and synchrotron x-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline RbH₂PO₄ upon heating within the 30-250 °C temperature regime. We report no evidence of the previously reported onset of partial polymerization at $T=96^{\circ}\mathrm{C}$ which was proposed as an explanation for the observed high-temperature several-order-ofmagnitude increase in proton conductivity observed in phosphate-based solid acids. Instead, we found that a tetragonal-to-monoclinic polymorphic transition initiates at $T \sim 90^{\circ}$ C. The transition is complete at $T \sim 130^{\circ}$ C, and the new monoclinic RbH_2PO_4 polymorph is stable upon further heating to T=200°C. Moreover, this reported monoclinic phase is isomorphic to that of monoclinic CsH₂PO₄. This remarkable similarity suggests that the microscopic structures and dynamics responsible for the high-temperature superprotonic behavior of RbH₂PO₄ could be the same as those of its Cs-based counterpart.

> Ronald J Tackett University of Texas at El Paso

Date submitted: 18 Nov 2009 Electronic form version 1.4