Abstract Submitted for the MAR10 Meeting of The American Physical Society

Quantum Hall Exciton Condensation at Full Spin Polarization¹ A.D.K. FINCK, J.P. EISENSTEIN, California Institute of Technology, L.N. PFEIF-FER, K.W. WEST, Princeton University — Using Coulomb drag as a probe, we explore the excitonic phase transition in quantum Hall bilayers at $\nu_T = 1$ as a function of Zeeman energy, E_Z . The critical layer separation $(d/\ell)_c$ for exciton condensation initially increases rapidly with E_Z , but then reaches a maximum and begins a gentle decline. At high E_Z , where both the excitonic phase at small d/ℓ and the compressible phase at large d/ℓ are fully spin polarized, we find that the width of the transition, as a function of d/ℓ , is much larger than at small E_Z and persists in the limit of zero temperature. We discuss these results in the context of two models in which the system contains a mixture of the two fluids.

¹This work was supported via NSF grant DMR-0552270.

Aaron Finck California Institute of Technology

Date submitted: 18 Nov 2009

Electronic form version 1.4