Abstract Submitted for the MAR10 Meeting of The American Physical Society

Thermoelectric properties of $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{Rh}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ SOICHIRO SHIBASAKI, KOICHI NOGUCHI, ICHIRO TERASAKI, Waseda Univ. — We have studied thermoelectric properties of the perovskite-type rhodium oxide LaRhO₃ to clarify the electronic state of $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{CoO}_3$. We have focused on Rh oxides as a reference to Co oxide, because Rh ions are stable in the low-spin state. To reveal the difference of the thermoelectric properties between $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{RhO}_3$ and $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{CoO}_3$, we have measured thermoelectric properties of $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{Rh}_{1-x}\operatorname{Co}_x\operatorname{O}_3$. XRD analysis revealed that the crystal structure of $\operatorname{La}_{1-y}\operatorname{Sr}_y\operatorname{Rh}_{1-x}\operatorname{Co}_x\operatorname{O}_3$ changes from orthorhombic to rhombohedral above around $x\sim 0.75$. The resistivity at 300 K decreases with the Co concentration, whereas the magnitude of the thermopower takes a maximum around $x\sim 0.25$. This phenomenon clearly suggests a certain correlation between Rh and Co ions.

> Soichiro Shibasaki Waseda Univ.

Date submitted: 18 Nov 2009

Electronic form version 1.4