Conductivity switching of two benzene rings under electric field

MAIA G. VERGNIORY, Donostia International Physics Center, Donostia, Spain, JOSE MANUEL ROLDÁN-GRANDINO, Universidad de Jaén, Jaén, Spain, ARANTZAZU GARCIA-LEKUE, Donostia International Physics Center, Donostia, Spain, LIN-WANG WANG, Lawrence Berkeley National Laboratory, Berkeley, CA, USA — We study the electron transport and switching of S-C$_6$H$_3$F(CH$_3$)-C$_6$H$_3$(CH$_3$)F-S molecule sandwiched between two Au(111) electrodes using plane wave quantum transport calculation method described in [1-2]. A nonlocal pseudopotential method is used to describe the system, and scattering states are calculated. We found that under zero external electric field, the two rings have a perpendicular configuration, while under strong external electric field they change into a planar configuration. As a result, the quantum conductivity of the system will increase for more than ten times. We propose to use this as a molecular switch, serving the function of a transistor.

1Basic Energy Science (BES) of the Office of Science (SC) under Department of Energy (DOE) and Basque Country Postdoctoral Fellowship Program DK.