Conductivity switching of two benzene rings under electric field1

MAIA G. VERGNIORY, Donostia International Physics Center, Donostia, Spain, JOSE MANUEL ROLDÁN-GRANADINO, Universidad de Jaén, Jaén, Spain, ARANTZAZU GARCIA-LEKUE, Donostia International Physics Center, Donostia, Spain, LIN-WANG WANG, Lawrence Berkeley National Laboartory, Berkeley, CA, USA — We study the electron transport and switching of S-C\textsubscript{6}H\textsubscript{3}F(CH\textsubscript{3})-C\textsubscript{6}H\textsubscript{3}(CH\textsubscript{3})F-S molecule sandwiched between two Au(111) electrodes using plane wave quantum transport calculation method described in [1-2]. A nonlocal pseudopotential method is used to describe the system, and scattering states are calculated. We found that under zero external electric field, the two rings have a perpendicular configuration, while under strong external electric field they change into a planar configuration. As a result, the quantum conductivity of the system will increase for more than ten times. We propose to use this as a molecular switch, serving the function of a transistor.

1Basic Energy Science (BES) of the Office of Science (SC) under Department of Energy (DOE) and Basque Country Postdoctoral Fellowship Program DK.

Maia G. Vergniory
Donostia International Physics Center

Date submitted: 18 Nov 2009