Coulomb drag in quantum circuits1 ALEX LEVCHENKO, Argonne National Laboratory, ALEX KAMENEV, University of Minnesota — We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the nonlinear regime the drag current is proportional to the shot noise of the driving circuit, suggesting that the Coulomb drag experiments may be a convenient way to measure the quantum shot noise. Remarkably, the transition to the nonlinear regime may occur at driving voltages substantially smaller than the temperature.

1Research at ANL was supported by the US DOE under Contract No.DE-AC02-06CH11357. Research at UMN was supported by NSF grants DMR-0405212 and DMR-0804266.

Alex Levchenko
Argonne National Laboratory

Date submitted: 18 Nov 2009

Electronic form version 1.4