Mutual effect of \(^{3}\)He impurities and Peierls potential on shear modulus softening in solid \(^{4}\)He\(^{1}\)

D. ALEINIKAVA, E. DEDITS, A.B. KUKLOV, CSI, CUNY, D. SCHMELTZER, CCNY, CUNY — We investigate numerically dislocation crossover from quantum smooth to classically rough state in solid \(^{4}\)He in presence of both - Peierls potential and \(^{3}\)He impurities as pinning centers providing gaussian trapping potential. Monte Carlo simulations have been performed within the formalism [1]. \(^{3}\)He is modeled as classical particles localized on dislocations according to thermal equilibrium with the bulk at some activation energy \(E_0\), the \(^{3}\)He total fraction \(x_3\) as well as the dimensionless dislocation density \(x_d \ll 1\) (in units of interatomic distance). It is shown that the softening of the shear modulus \(\mu(T)\) observed in Ref.[2] cannot be explained within the simple \(^{3}\)He evaporation model under the assumption of zero Peierls potential: for realistic \(E_0\), \(x_3\) and \(x_d\) the temperature range over which the softening occurs is much narrower, \(\approx E_0/\ln(x_d/x_3^2)\) (where \(x_3 \sim x_d\)), than the one observed in [2]. Inclusion of the Peierls potential smoothens out the crossover and allows good fit of the data [2].

\(^{1}\)We acknowledge support from NSF (PHY0653135) and CUNY.