Abstract Submitted for the MAR10 Meeting of The American Physical Society

All-electron KKR Calculations for Metallic Systems with Thousands of Atoms Per Cell via Sparse Matrix Iterative Solvers¹ SUFFIAN KHAN, DUANE JOHNSON, University of Illinois at Urbana-Champaign — To perform electronic-structure calculations for inherently large systems, such as a quantum dots with heterogeneous interfaces, we must perform the calculations over very large unit cells (10^4 to 10^8 atoms). KKR methods typically solve for G by direct inversion G⁻¹, with known analytic form. Using a screened, k-space hybrid KKR, we solve Dyson's equation for the Green's function using a reference state via G = G_{ref} [I - (t - t_{ref}) G_{ref}]⁻¹, scattering matrices t and t_{ref} are known and the non-Hermitian tensor G_{ref} is chosen for convenience and sparsity [1]. The approach is O(N) for bandgap materials, whereas it is O(N²) for metals but with a potentially large prefactor. We use Krylov-space solvers to reduce storage and exploit known symmetries. Parallel iterative and energy contour solves are made also. We explore the numerical efficiency and scaling versus atoms per unit cells. [1] Smirnov and Johnson, Comp! ¹Phys. Comm. 148, 74-80 (2002).

¹Support by DOE/BES DEFG02-03ER46026 and HERE Fellowship at ORNL

Suffian Khan University of Illinois at Urbana-Champaign

Date submitted: 18 Nov 2009

Electronic form version 1.4