High sensitivity of 17O NMR to p-d hybridization in transition metal perovskites: first principles calculations of large anisotropic chemical shielding

DANIEL L. PECHKIS, ERIC J. WALTER, HENRY KRAKAUER,
College of William and Mary — First principles calculations are used to show that O chemical shielding tensors, $\hat{\sigma}$, are a sensitive indicator of local structure in transition metal ABO$_3$ perovskites, due to their strong dependence on covalent O(2p)-B(nd) interactions. This indicates that 17O NMR spectroscopy, coupled with first principles calculations, can be an especially useful tool to study the local structure in complex perovskite alloys. Our principal findings are 1) a large anisotropy between deshielded $\sigma_x \simeq \sigma_y$ and shielded σ_z components; 2) a nearly linear variation of isotropic σ_{iso} and uniaxial σ_{ax} components, as a function of the B-O-B bond asymmetry, across all the systems studied; 3) the demonstration that the anisotropy and linear variation arise from large paramagnetic contributions to σ_x and σ_y, due to virtual transitions between O(2p) and unoccupied B(nd) states. 4) Very good agreement with recent BaTiO$_3$ and SrTiO$_3$ single crystal 17O NMR measurements of isotropic δ_{iso} and uniaxial δ_{ax} chemical shifts, and good agreement with PbTiO$_3$ and PbZrO$_3$ powder spectrum δ_{iso} measurements.

1Supported by ONR and the Virgina Space Grant Consortium.
2Pechkis et al., JCP 131, 184511 (2009); references therein.

Daniel L. Pechkis
College of William and Mary

Date submitted: 22 Nov 2009