Abstract Submitted for the MAR10 Meeting of The American Physical Society

High sensitivity of ¹⁷O NMR to p-d hybridization in transition metal perovskites: first principles calculations of large anisotropic chemical shielding¹ DANIEL L. PECHKIS, ERIC J. WALTER, HENRY KRAKAUER, College of William and Mary — First principles calculations are used to show that O chemical shielding tensors, $\hat{\sigma}$, are a sensitive indicator of local structure in transition metal ABO₃ perovskites, due to their strong dependence on covalent O(2p)-B(nd) interactions.² This indicates that ¹⁷O NMR spectroscopy, coupled with first principles calculations, can be an especially useful tool to study the local structure in complex perovskite alloys. Our principal findings are 1) a large anisotropy between deshielded $\sigma_x \simeq \sigma_y$ and shielded σ_z components; 2) a nearly linear variation of isotropic σ_{iso} and uniaxial σ_{ax} components, as a function of the B-O-B bond asymmetry, across all the systems studied; 3) the demonstration that the anisotropy and linear variation arise from large paramagnetic contributions to σ_x and σ_y , due to virtual transitions between O(2p) and unoccupied B(nd) states. 4) Very good agreement with recent $BaTiO_3$ and $SrTiO_3$ single crystal ¹⁷O NMR measurements of isotropic δ_{iso} and uniaxial δ_{ax} chemical shifts, and good agreement with PbTiO₃ and PbZrO₃ powder spectrum δ_{iso} measurements.²

¹Supported by ONR and the Virgina Space Grant Consortium. ²Pechkis et al., JCP **131**, 184511 (2009); references therein.

> Daniel L. Pechkis College of William and Mary

Date submitted: 22 Nov 2009

Electronic form version 1.4