Synthesis, Crystal Structure, and Magnetism of the New UIr$_4$Al$_{15}$ Compound

PAUL TOBASH, FILIP RONNING, JOE THOMPSON, ERIC BAUER, Los Alamos National Laboratory — We report on single-crystals of a new compound grown from Al flux, UIr$_4$Al$_{15}$, crystallizing in the NdRh$_4$Al$_{15.4}$ type structure in the tetragonal space group $P4_2/nmc$ (No. 137) with unit cell parameters $a = 9.0239(6)$ Å and $c = 15.513(2)$ Å. The crystal structure of the compound was established from single-crystal X-ray diffraction and was found to be void of any crystallographic disorder. The U atoms center a polyhedron with the coordination number of each U atom being 20. The physical properties of UIr$_4$Al$_{15}$ were measured which included magnetic susceptibility, specific heat, and electrical resistivity. The compound was found to undergo long-range antiferromagnetic order at $T_N = 20$ K with a Sommerfeld coefficient extrapolated in the antiferromagnetically ordered state of ca. 42 mJ/mol-K2. The physical properties suggest that UIr$_4$Al$_{15}$ may be an itinerant antiferromagnet. The compound belongs to a series of isostructural compounds, and preliminary results indicate that Th, La, Ce, Pr, Sm, Yb, and Lu analogues can be synthesized under identical conditions.

Paul Tobash
Los Alamos National Laboratory

Date submitted: 18 Nov 2009

Electronic form version 1.4