Novel Antenna Coupled 2D Plasmonic Terahertz Detection

GREG DYER, UC Santa Barbara, GREG AIZIN, CUNY, ERIC SHANER, MKE WANKE, JOHN RENO, Sandia National Laboratories, S. JAMES ALLEN, UC Santa Barbara — Resonant plasmonic detectors are potentially important for terahertz (THz) spectroscopic imaging. We have fabricated and characterized antenna coupled detectors that integrate a broad-band antenna, which improves coupling of THz radiation. The vertex of the antenna contains the tuning gates and the bolometric barrier gate.1–3 Incident THz radiation may excite 2D plasmons with wave-vectors defined by either a periodic grating gate or a plasmonic cavity determined by ohmic contacts and gate terminals. The latter approach of exciting plasmons in a cavity defined by a short micron-scale channel appears most promising. With this short-channel geometry, we have observed multiple harmonics of THz plasmons. At 20 K with detector bias optimized we report responsivity on resonance of 2.5 kV/W and an NEP of 5×10^{-10} W/Hz$^{1/2}$. This work is supported through NSF NIRT Grant No. ECS0609146, and in collaboration with Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 1E.A. Shaner, et al., Appl. Phys. Lett. \textbf{90}, 181127 (2007). 2G. Dyer, et al., J. Phys. Con. Mat., \textbf{21}, 195803 (2009). 3V. Ryzhii, et al., J. Appl. Phys. \textbf{103}, 014504 (2008).