Abstract Submitted for the MAR10 Meeting of The American Physical Society

Theory of ac Josephson effects in multiple tunneling junctions: A probe of $\pm s$ -wave in iron-based superconductors YUKIHIRO OTA¹, NORIYUKI NAKAI², HIROKI NAKAMURA³, MASAHIKO MACHIDA⁴, CCSE, JAEA, DAISUKE INOTANI, YOJI OHASHI⁵, Dept. of Physics, Keio Univ., TOMIO KOYAMA⁶, HIDEKI MATSUMOTO⁷, IMR, Tohoku Univ. — An enormous amount of studies has been devoted to the identification of the pairing symmetry in iron-based superconductors. We show a theory of Josephson junctions with multi-gap superconductors. We focus on a heterotic (multi-band)superconductorinsulator-(one-band)superconductor junction. We derive the Ambegaokar-Baratoff relation. We evaluate a lower bound of $J_c R_n$ for *s*-wave without sign change, which may correspond to a upper bound for $\pm s$ -wave. Next, we discuss how a fluctuation of relative phases between the gaps and the symmetry modify the Shapiro step. Thus, we propose a direct method to identify $\pm s$ -wave.

¹CREST(JST) ²CREST(JST) ³CREST(JST) and JST-TRIP ⁴CREST(JST) and JST-TRIP ⁵CREST(JST) ⁶CREST(JST) ⁷CREST(JST)

> Yukihiro Ota CCSE, JAEA

Date submitted: 18 Nov 2009

Electronic form version 1.4