D’yakonov-Perel’ spin relaxation in the interacting electron gas in doped semiconductors

MATTHEW MOWER, GIOVANNI VIGNALE, University of Missouri — D’yakonov-Perel’ spin relaxation describes spin precession limited by collisions, an effect studied by many authors. It is of fundamental importance in spintronics as it controls spin polarization decay times. The spin relaxation rate is expressed as $1/\tau_s = \langle \Omega_k^2 \tau_k^* \rangle$, where Ω_k is the spin precession frequency due to spin-orbit interaction, and τ_k^* is an effective momentum relaxation time quite different from that in electrical conductivity or the quasiparticle lifetime ($\langle \rangle$ denotes an average over the classical or quantum momentum distribution). An explicit quantitative study of τ_k^* in three dimensional degenerate electron liquids has not yet been provided. In this study we adapt the classic Abrikosov-Khalatnikov theory of transport in Fermi liquids to the calculation of τ_k^* in the degenerate electron gas. This approach enables us to include both direct and exchange scattering processes. We also introduce an effective electron-electron interaction to include correlation corrections to τ_k^*. Results are presented for different densities and sub-Fermi temperatures.

1Work supported by NSF Grant No. DMR-0705460