Abstract Submitted for the MAR10 Meeting of The American Physical Society

Transport and electronic properties of a polar semiconductor junction¹ M.-H. TSAI, T.-H. LU, National Sun Yat-Sen University — Besides molecular junctions, polar semiconductor junctions may also be suitable candidates for nm-scale electronic active devices. Here, the current density-voltage (J-V) characteristics and partial densities of states (PDOS) have been calculated for an Au/AlN/Au junction with a two-bilayer thick AlN[0001] layer. Results show that when V_{bias} , which is defined as the electric potential at the Al-side electrode relative to that at the N-side electrode, is positive, the J-V curve is approximately ohmic up to $V_{bias} \approx 0.4V$. Then J drops suddenly to a small value. Beyond $V_{bias} \approx 0.4V$, J exhibits approximately three steps at J \approx 3, 20, 39 nA/ a_0^2 in 0.4V < V_{bias} < 0.75V, $0.75V < V_{bias} < 1.1V$ and $1.1V < V_{bias} < 1.7V$ regions, respectively, within $V_{bias} = 1.7V$ considered in this study. As for $V_{bias} < 0$, the J-V curve is approximately ohmic up to $V_{bias} \approx -2.0V$ and then drops suddenly from about $20 \text{nA}/a_0^2$ down to about $2nA/a_0^2$ and remains small beyond $V_{bias} \approx -2.0V$, which indicates a cutoff of the current. Based on calculated V_{bais} -dependent PDOSs, this transport property can be attributed to the energy gap and the polar nature of the AlN layer.

¹Supported by the National Science Council of Taiwan: NSC 96-2112-M-110-010-MY2

Min-Hsiung Tsai National Sun Yat-Sen University

Date submitted: 19 Nov 2009

Electronic form version 1.4