Electron-Phonon Interactions in a single modulation doped Ga$_{0.24}$In$_{0.76}$As/InP Quantum Well

GERARD MARTINEZ, MILAN ORLITA, CLEMENT FAUGERAS, LNCMI, CNRS, Grenoble, SERGEI STUDENIKIN, PHILIP POOLE, GEOF AERS, IMS, NRC, Ottawa — A series of Ga$_{0.24}$In$_{0.76}$As/InP modulation doped single quantum well (QW) structures have been investigated using cyclotron resonance experiments. The far-infrared magneto-transmission experiments are analyzed with a multidielectric model allowing the extraction of the imaginary part of the response function, revealing strong interactions with the different phonon energies of the mixed compound. For carrier densities n_S higher than about $3.4\times10^{11} \text{ cm}^{-2}$ the only observed interaction is with the TO modes of the system whereas for lower densities, in addition to this interaction, a clear polaronic interaction with the LO phonons develops and increases as n_S decreases. Due to the specific dielectric character of this compound these different types of interaction can be clearly identified and even quantified.

Gerard Martinez
LNCMI, CNRS, Grenoble

Date submitted: 19 Nov 2009