Abstract Submitted for the MAR10 Meeting of The American Physical Society

The Kubo-Greenwood expression and 2d MIT transport THEODORE CASTNER, Univ. of Rochester — The 2d MIT in GaAs heterostructures (p- and n-type)features a mobility that drops continuously as the reduced density $\mathbf{x} = \mathbf{n}/\mathbf{n}_c$ -1 is decreased. The Kubo-Greenwood result [1] predicts $\mu =$ $(\epsilon\epsilon_h/\mathbf{hn}_c)\alpha^2(\mathbf{x})$ where α is a normalized DOS. $\alpha(\mathbf{x})$ is obtained from the data [ptype, Gao et al. [2]; n-type Lilly et al. [3]]. Interact -ion corrections yield a Fermi energy $\mathbf{E}_F = \mathbf{E}_c [\mathbf{x}-\mathbf{A}_{HF} \mathbf{x}^{1/2}/\gamma + \mathbf{A}_{CT,ic} \mathbf{x}^{1/4}/\gamma^{3/2}]$ where $\mathbf{E}_c = \mathbf{n}_c/\mathbf{a}_2$ with \mathbf{a}_2 the noninteracting DOS and $\gamma = (2\pi\mathbf{n}_c)^{1/2}\mathbf{a}^*$, \mathbf{A}_{HF} is a Hartree -Fock term, while $\mathbf{A}_{CT,ic}$ is a repulsive interaction term between the charged traps (CT) and the itinerant carriers (ic) that are confined in conducting filaments. $\mathbf{N}(\mathbf{E}_F,\mathbf{x})$ is determined using $\mathbf{N}(\mathbf{E})\mathbf{d}\mathbf{E}=2\mathbf{k}\mathbf{d}\mathbf{k}/2\pi$ where $\mathbf{k}_F=(2\pi\mathbf{n}_c \mathbf{x})^{1/2}$. The data determines the "self-energy" terms \mathbf{A}_{HF} and $\mathbf{A}_{CT,ic}$. The effective mass $\mathbf{m}^*(\mathbf{x})$ is given by $\mathbf{m}^*(\mathbf{x})/\mathbf{m}_b^* = 1/\alpha(\mathbf{x})$ and diverges as $\mathbf{x}^{-3/4}$ as \mathbf{x} goes to zero at T=0. $\alpha(\mathbf{x})$ goes to 1 for large \mathbf{x} . The interaction approach will be compared with the percolation approach. [1] Mott and Davis, Elect. Prop. in Noncryst. Mat. [Clarendon Press 1971]; [2) Gao et al. PRL93,256402 (2004); [3] Lilly et al.PRL90,056806 (2003)

> Theodore Castner Univ. of Rochester

Date submitted: 23 Nov 2009

Electronic form version 1.4