Fermions in 2D Optical Lattices: Temperature and Entropy Scales for Observing Antiferromagnetism and Superfluidity1 THEREZA PAIVA, Universidade Federal do Rio de Janeiro, RICHARD SCALETAR, University of California, Davis, MOHIT RANDERIA, NANDINI TRIVEDI, Ohio State University — One of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-dimensional Hubbard models. We investigate antiferromagnetic correlations in the repulsive model at half filling and superfluidity of s-wave pairs in the attractive case away from half filling using determinantal quantum Monte Carlo simulations. We find that an entropy per particle $\ln(2)$ is sufficient to observe the charge gap in the repulsive Hubbard model or the pairing pseudogap in the attractive case. Observing antiferromagnetic correlations or superfluidity in 2D systems requires a further reduction in entropy by a factor of three or more. In contrast to higher dimensions, we find that adiabatic cooling is not useful to achieve the required low temperatures.

1We acknowledge support from the Brazilian agencies CNPq and FAPERJ (TP), ARO Award W911NF0710576 with funds from DARPA OLE Program (RTS), ARO W911NF-08-1-0338 (MR and NT), NSF-DMR 0706203 (MR).

Thereza Paiva
Sociedade Brasileira de Fisica