Abstract Submitted for the MAR10 Meeting of The American Physical Society

Role of Codeposited Impurities in Growth: Dependence of Morphology on Binding and Barrier Energies¹ RAJESH SATHIYANARAYANAN, Univ. of Maryland, College Park & Pennsylvania State Univ., University Park, A. BH. HAMOUDA, UMD & Univ. of Monastir, Tunisia, A. PIMPINELLI, UMD & Science Attaché, French Embassy, Houston, T. L. EINSTEIN, UMD — The previous talk showed that codeposition of impurity atoms during epitaxial growth could be used for nanostructuring of surfaces. Based on their lateral nearest-neighbor binding energies (E_{NN}) to Cu and their diffusion barriers (E_d) on Cu(001), we classify the candidate impurity atoms into four sets. We find that codeposition of impurities from different sets produce qualitatively different surface morphologies both in the step-flow and the submonolayer $(\theta \leq 0.7 \text{ ML})$ regimes. In the submonolayer regime, we characterize these differences through variations of the number of islands (N_i) and the average island size with coverage (θ) . Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.²

Rajesh Sathiyanarayanan Univ. of Maryland, College Park

Date submitted: 23 Nov 2009 Electronic form version 1.4

 $^{^1\}mathrm{Supported}$ by NSF MRSEC Grant DMR 05-20471; NSF supported computer usage at NCSA, UIUC.

²A. Pimpinelli, T. L. Einstein, Phys. Rev. Lett. 99, 226102 (2007).