Spiral patterns in wet granular matter under vertical vibrations
KAI HUANG, FRANK GOLLWITZER, INGO REHBERG, Experimentalphysik V, Universitaet Bayreuth, 95440 Bayreuth, Germany — From the evolution of galaxy to hurricane, from the inner structure of sea shell to the cochlea of our inner ears, spirals are widely existing in nature. In the past decades, spiral patterns have been discovered and extensively studied in model systems such as Rayleigh-Bénard convection, Belousov-Zhabotinsky reactions and various biological systems. Here we report spiral patterns observed in a thin layer of wet granular matter driven by vertical vibrations. In the phase diagram of driven wet granular matter, spirals appear close to a fluid-gas coexistence phase and show hysteresis. The trajectory and rotation velocity of the three-armed spirals are studied as a function of the driving parameters and compared with other model systems.

Kai Huang
Experimentalphysik V, Universitaet Bayreuth, 95440 Bayreuth, Germany

Date submitted: 19 Nov 2009