Abstract for an Invited Paper for the MAR10 Meeting of The American Physical Society

Structural Stability and Superconductivity in the Iron Chalcogenides¹ MAW-KUEN WU, Institute of Physics, Academia Sinica

We have developed processes to grow $Fe_{1+x}Se$ single crystals and epitaxial films. X-ray diffraction measurements show that the plate side thin films of the crystal is tetragonal β -FeSe. The as grown crystals show a superconducting transition T_c at 8 K. In addition, superconducting $Fe_{1+x}(Se_{1-y}Te_y)$ thin films have also been fabricated by pulsed laser deposition on MgO. All $Fe_{1+x}(Se_{1-y}Te_y)$ films show preferred orientation and smooth surface morphology. However, a strong orientation and thickness dependence of Tc was found in $Fe_{1+x}Se$ thin films deposits at low substrate temperature. Detailed x-ray structural studies on both the single crystal and epitaxial thin films show that the existence of a low temperature structural distortion is essential for the occurrence of superconductivity.

¹Works supported by the Taiwan National Science Council and the US AFOSR/AOARD grants.