Abstract Submitted for the MAR10 Meeting of The American Physical Society

Role of native defects in the Li amide/Li imide hydrogen storage reaction¹ KHANG HOANG, CHRIS G. VAN DE WALLE, University of California - Santa Barbara — Reversible reaction involving Li amide/Li imide (LiNH₂ + LiH \leftrightarrow Li₂NH + H₂) has been shown to be a potential mechanism for hydrogen storage [1]. Recent synchrotron x-ray diffraction refinement suggests that the transformation between LiNH₂ and Li₂NH is a bulk reaction that occurs through non-stoichiometric processes [2]. To build a deeper understanding of these processes, we have carried out first-principles studies based on density functional theory of native point defects and defect complexes in LiNH₂ and Li₂NH. Among the native defects, we find that positively and negatively charged Li and H interstitials and vacancies have the lowest formation energies. Some of the Li-related defects are found to be very mobile, and should be the dominant migratory species in the systems. Our first-principles results suggest specific mechanisms for the role of native defects in the Li amide/Li imide reaction. [1] P. Chen *et al.*, Nature **420**, 302 (2002). [2] W. I. F. David *et al.*, J. Am. Chem. Soc. **129**, 1594 (2007).

¹Work supported by General Motors Corporation.

Khang Hoang University of California - Santa Barbara

Date submitted: 19 Nov 2009

Electronic form version 1.4