Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Magnetic order, spontaneous polarization, and magnetoelectric effect in rare earth iron borates: $\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4$ B. LORENZ, R. P. CHAUDHURY, Y. Y. SUN, TCSUH and Dept. of Physics, University of Houston, C. R. DELA CRUZ1, Dept. of Physics and Astronomy, University of Tennessee, L. N. BEZMATERNYKH, V. L. TEMEROV, Inst. of Physics, Siberian Div., RAS, C. W. CHU2, TCSUH and Dept. of Physics, University of Houston — Comprehensive results are presented for the thermodynamic, magnetic, dielectric, and magnetoelectric properties of $\text{HoFe}_3(\text{BO}_3)_4$ and the solid solution $\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4$ ($x = 0.5$ and 0.75). All compounds undergo a Neél order at $T_N > 30$ K and a spin reorientation at $T_{SR} < 10$ K. $\text{HoFe}_3(\text{BO}_3)_4$ shows a spontaneous electrical polarization below T_N which decreases below T_{SR} and in external magnetic fields. $\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4$ exhibits both, a spontaneous polarization and a large positive magnetoelectric effect. The superposition of spontaneous polarization induced by the internal magnetic field and the magnetoelectric polarization in external fields results in a complex behavior of the electrical polarization as function of temperature and/or magnetic fields. The magnetic order of $\text{HoFe}_3(\text{BO}_3)_4$ is further explored by neutron scattering experiments in external magnetic fields.

1also at: NSSD, Oak Ridge National Laboratory

2also at: LBNL Berkeley

B. Lorenz
TCSUH and Dept. of Physics, University of Houston

Date submitted: 19 Nov 2009

Electronic form version 1.4