Abstract Submitted for the MAR10 Meeting of The American Physical Society

Magnetic order, spontaneous polarization, and magnetoelectric effect in rare earth iron borates: $Ho_{1-x}Nd_xFe_3(BO_3)_4$ B. LORENZ, R. P. CHAUDHURY, Y. Y. SUN, TCSUH and Dept. of Physics, University of Houston, C. R. DELA CRUZ¹, Dept. of Physics and Astronomy. University of Tennessee, L. N. BEZMATERNYKH, V. L. TEMEROV, Inst. of Physics, Siberian Div., RAS, C. W. CHU², TCSUH and Dept. of Physics, University of Houston — Comprehensive results are presented for the thermodynamic, magnetic, dielectric, and magnetoelectric properties of $HoFe_3(BO_3)_4$ and the solid solution $Ho_{1-x}Nd_xFe_3(BO_3)_4$ (x = 0.5 and 0.75). All compounds undergo a Neél order at $T_N > 30$ K and a spin reorientation at $T_{SR} < 10$ K. HoFe₃(BO₃)₄ shows a spontaneous electrical polarization below T_N which decreases below T_{SR} and in external magnetic fields. $\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4$ exhibits both, a spontaneous polarization and a large positive magnetoelectric effect. The superposition of spontaneous polarization induced by the internal magnetic field and the magnetoelectric polarization in external fields results in a complex behavior of the electrical polarization as function of temperature and/or magnetic fields. The magnetic order of HoFe₃(BO₃)₄ is further explored by neutron scattering experiments in external magnetic fields.

¹also at: NSSD, Oak Ridge National Laboratory

²also at: LBNL Berkeley

B. Lorenz TCSUH and Dept. of Physics, University of Houston

Date submitted: 19 Nov 2009 Electronic form version 1.4