Kondo anomalies in magnetic nanocontacts from first principles

PROCOLO LUCIGNANO, SISSA, Trieste; and CNR-INFM Coherentia, Naples, Italy, PIERPAOLO BARUSELLI, SISSA, and CNR-Democritos, Trieste, Italy, MICHELE FABRIZIO, SISSA, ICTP, and CNR-Democritos, Trieste, Italy, RICCARDO MAZZARELLO, SISSA, Trieste, Italy; and ETH Zurich, USI Campus, Lugano, Switzerland, ALEXANDER SMOGUNOV, ICTP, SISSA, and CNR-Democritos, Trieste, Italy, ERIO TOSATTI, SISSA, ICTP, and CNR-Democritos, Trieste, Italy — A realistic calculation of electron transport through magnetic nanocontacts should connect together DFT based electronic structure with many body methods like NRG. We recently moved a first step in this direction [1,2]. Identifying symmetry-dictated conduction channels, we calculate first the DFT channel- and spin-dependent impurity scattering phase shifts; then build an Anderson model whose symmetry and parameters are forced to reproduce at the Hartree Fock level the phase shifts; and finally solve the Anderson model by NRG. This yields much more than just the Kondo temperature. As exemplified by a Ni impurity in a Au nanocontact, we uncover the orbital origin the Fano interference in the predicted zero bias Kondo anomalies; the origin of their large structural dependence; and the likely occurrence of the so far ignored “ferro” Kondo effect. We are presently extending calculations to other nanocontacts including magnetic impurities on surfaces and nanotubes.


Erio Tosatti
SISSA, ICTP. CNR-Democritos, Trieste, Italy