Experiments using Force Detected Nuclear Magnetic Resonance

HAN-JONG CHIA, ROSA E. CARDENAS, ISAAC MANZANERA ESTEVE, MARK C. MONTI, JOHN T. MARKERT, University of Texas at Austin — We describe experiments using force detected nuclear magnetic resonance (NMR). We have developed a helium-3 system for high sensitivity measurements. An initial room temperature scan on (NH_4)_2SO_4 demonstrated 1-D resolution of 10 µm; a spin nutation experiment determined the value of the rotating magnetic field to be 13 gauss, and a spin echo was observed with a full width half maximum of 8 µs. At 77 K we obtained the first force detected boron NMR signal in a 30 µm powder sample of the superconductor MgB_2. Our measurements yielded a force of 10^{-13} N with B_1 = 63 gauss. Further studies are underway to map the spin lattice relaxation with respect to temperature to elucidate the pairing symmetry of MgB_2 as well as effects due to its two nearly independent electronic bands. In addition we describe the construction of a compact room temperature probe and a variable temperature probe for dynamical imaging experiments.

1NSF Grant Nos. DMR-0605828 and DGE-0549417, and Welch Foundation Grant No. F-1191