Electronic structure of PbTiO$_3$-based ferroelectric materials determined from LDA+U study

GAOYANG GOU, HIROYUKI TAKENAKA,
JOSEPH BENNETT, ANDREW RAPPE, The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
— We perform a systematic theoretical study of the electronic structure of PbTiO$_3$ and related ferroelectric materials, using LDA+U calculations. The effective on-site correlation terms U for the localized electronic states of PbTiO$_3$ are determined with a linear-response method. Compared to the DFT- LDA method (where the band gap values are greatly underestimated), band gap values for PbTiO$_3$ obtained by LDA+U calculations are much closer to the experimental results. Special focus has been paid to solid-state solutions formed by doping PbTiO$_3$ with a d^8 cation (Ni, Pd, Pt) and accompanying O vacancy, which have recently been proposed. We re-examine the dopant states of these materials, and also recalculate their electronic structures using the LDA+U method. The improvement achieved with the LDA+U method and comparison with experimental results will be presented.

1The authors acknowledge support from the DOE under Grant DE-FG02-07ER46431.