Extension of the Source-Sink Potential (SSP) approach for multi-channel conductance calculations

PHILIPPE ROCHELEAU, MATTHIAS ERNZERHOF, Universite de Montreal — In molecular electronics, molecules are connected to macroscopic contacts and the current passing through is studied as a function of the applied voltage. We focus on modeling the transmission of electrons through such a molecular electronic device (MED). Based on a simple Hückel Hamiltonian to describe the \(\pi \) electrons in conjugated systems, the SSP method \([1,2,3]\) employs complex potentials to replace the wavefunction of the infinite contacts in a rigorous way. The initial SSP approach \([4]\) was limited to two one-dimensional contacts, here we extend the approach to multiple channels, i.e., to two-dimensional contacts including transverse modes. We describe the development of the method and illustrate it with applications.

References: