MAR10-2009-003013

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Optically controlled spins in semiconductor quantum dots SOPHIA ECONOMOU, Naval Research Lab

Spins in charged semiconductor quantum dots are currently generating much interest, both from a fundamental physics standpoint, as well as for their potential technological relevance. Being naturally a two-level quantum system, each of these spins can encode a bit of quantum information. Optically controlled spins in quantum dots possess several desirable properties: their spin coherence times are long, they allow for all-optical manipulation—which translates into fast logic gates—and their coupling to photons offers a straightforward route to exchange of quantum information between spatially separated sites. Designing the laser fields to achieve the unprecedented amount of control required for quantum information tasks is a challenging goal, towards which there has been recent progress. Special properties of hyperbolic secant optical pulses enabled the design of single qubit rotations, initially developed about the growth axis z [1], and later about an arbitrary direction [2]. Recently we demonstrated our theoretical proposal [1] in an ensemble of InAs/GaAs quantum dots by implementing ultrafast rotations about the z axis by an arbitrary angle [3], with the angle of rotation as a function of the optical detuning in excellent agreement with the theoretical prediction. We also developed two-qubit conditional control in a quantum dot 'molecule' using the electron-hole exchange interaction [4]. In addition to its importance in quantum dot-based quantum computation, our two-qubit gate can also play an important role in photonic cluster state generation for measurement-based quantum computing [5]. [1] S. E. Economou, L. J. Sham, Y. Wu, D. S. Steel, Phys. Rev. 74, 205415 (2006) [2] S. E. Economou and T. L. Reinecke, Phys. Rev. Lett., 99, 217401 (2007) [3] A. Greilich, S. E. Economou et al, Nature Phys. 5, 262 (2009) [4] S. E. Economou and T. L. Reinecke, Phys. Rev. B, 78, 115306 (2008) [5] S. E. Economou, N. H. Lindner, and T. Rudolph, in preparation