Abstract Submitted for the MAR10 Meeting of The American Physical Society

On the Molecular Structure of $\operatorname{Ge}_x \operatorname{Sb}_x \operatorname{Se}_{1-2x}$ glasses¹ K. GU-NASEKERA, P. BOOLCHAND, University of Cincinnati, A. JACKSON, Central Michigan University — The $Ge_xSb_xSe_{100-2x}$ ternary is isovalent to the phase-change material, $Ge_xSb_xTe_{100-2x}$, except the Selenides can be prepared as bulk alloy glasses while the Tellurides exist only as amorphous thin-films. Here we report on the Selenides synthesized over a wide composition range, 0 < x < 25%, and examined in modulated-DSC, Raman scattering and molar volume experiments. The enthalpy of relaxation at T_g shows the opening of a reversibility window or Intermediate Phase (IP) in the 13% < x < 18% range, or 2.40 < r < 2.54 mean coordination number range, where r = 2 + 3x. FT- Raman studies reveal frequency of the CS mode of GeSe₄ tetrahedra to steadily blue-shift with increasing x as networks stiffen. New vibrational modes are observed near 150 cm⁻¹ and near 220 cm⁻¹ at x > 18.18%, the chemical threshold, and are thought to result from homopolar bonds. Ab-initio cluster calculations place pyramidal $SbSe_3$ units and ethylene-like Sb_2Se_2 units to reveal Raman activity near 215 cm^{-1} and 228 cm^{-1} respectively. Evolution of glass structure with composition x will be discussed.

¹Supported by NSF grant DMR- 08-53957

Punit Boolchand University of Cincinnati

Date submitted: 19 Nov 2009

Electronic form version 1.4