On the Molecular Structure of Ge$_x$Sb$_x$Se$_{1-x}$ glasses1 K. GUNASEKERA, P. BOOLCHAND, University of Cincinnati, A. JACKSON, Central Michigan University — The Ge$_x$Sb$_x$Se$_{100-2x}$ ternary is isovalent to the phase-change material, Ge$_x$Sb$_x$Te$_{100-2x}$, except the Selenides can be prepared as bulk alloy glasses while the Tellurides exist only as amorphous thin-films. Here we report on the Selenides synthesized over a wide composition range, $0 < x < 25\%$, and examined in modulated-DSC, Raman scattering and molar volume experiments. The enthalpy of relaxation at T_g shows the opening of a reversibility window or Intermediate Phase (IP) in the $13\% < x < 18\%$ range, or $2.40 < r < 2.54$ mean coordination number range, where $r = 2 + 3x$. FT- Raman studies reveal frequency of the CS mode of GeSe$_4$ tetrahedra to steadily blue-shift with increasing x as networks stiffen. New vibrational modes are observed near 150 cm^{-1} and near 220 cm^{-1} at $x > 18.18\%$, the chemical threshold, and are thought to result from homopolar bonds. Ab-initio cluster calculations place pyramidal SbSe$_3$ units and ethylene-like Sb$_2$Se$_2$ units to reveal Raman activity near 215 cm^{-1} and 228 cm^{-1} respectively. Evolution of glass structure with composition x will be discussed.

1Supported by NSF grant DMR- 08-53957