Abstract Submitted for the MAR10 Meeting of The American Physical Society

Validity of Wiedemann-Franz law in thermoelectric half Heusler compounds¹ MAL-SOON LEE, University of New Orleans, S. D. MAHANTI, Michigan State University — There is renewed interest in the field of thermoelectrics for power generation. Several promising thermoelectrics are half-Heusler narrow band gap semiconductors. The efficiency of thermoelectric energy conversion depends on the transport coefficients through the figure of merit $ZT = \sigma S^2 T/\kappa$. For large ZT, it is necessary to decrease the total thermal conductivity $(\kappa = \kappa_l + \kappa_{el})$ as well as increase the Seebeck coefficient (S) and the electrical conductivity (σ) To determine κ_l experimentally, one usually subtracts the electronic thermal conductivity (κ_{el}) from measured κ , using the Wiedemann-Franz law $(\kappa_{el} = L_0 \sigma T,$ $L_0 = 2.45 \times 10^{-8} W\Omega/K^2$). To examine the validity of this law in half-Heusler compounds, we have chosen HfCoS as an example. We have calculated the electronic transport coefficients by employing ab-initio electronic structure method and the Boltzmann transport equation in HfCoSb. We calculate κ_{el} at constant current **J** $(\kappa_{el,J})$ and constant electric filed **E** $(\kappa_{el,E})$ where $\kappa_{el,J} = \kappa_{el,E} - T\sigma S^2$ which shows a significant deviation from values obtained with Wiedemann-Franz law. $\kappa_{el,J}$ is much smaller than $\kappa_{el,E}$ at low carrier concentrations (n) and/or at high temperatures (T) and the ratio $\kappa_{el,J}/\kappa_{el,E} \to 1$ at high n and/or low T.

¹supported by DARPA (HR0011-08-1-0084)

S. D. Mahanti Michigan State University

Date submitted: 19 Nov 2009 Electronic form version 1.4