Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Structural signal of a dynamic glass transition

SUDESHNA CHATTOPADHYAY (BANDYOPADHYAY), AHMET UYSAL, BENJAMIN STRIPE, GUENNADI EVMENENKO, PULAK DUTTA, Department of Physics and Astronomy, Northwestern University, STEVEN EHRLICH, Brookhaven National Laboratory, EVGUENIA A. KARAPETROVA, Argonne National Laboratory — Conventional wisdom states that there is no significant difference between the static structures of the glass and liquid states of a given material. Using x-ray reflectivity, we have studied pentaphenyl trimethyl trisiloxane, an isotropic liquid at room temperature with a dynamic glass transition at 224K. Surface density oscillations (surface layers) develop below 285K, similar to those seen in other metallic and dielectric liquids and in computer simulations [1]. Upon cooling further, there is a sharp increase in the penetration of the surface layers into the bulk material, i.e. an apparently discontinuous change in the static structure, exactly at the glass transition (224K) [2].

[1] e.g. O. M. Magnussen et al., PRL 74, 4444 (1995); H. Mo et al. PRL 96, 096107 (2006); E. Chac’on et al., PRL 87, 166101 (2001)

1Supported by NSF grant no. DMR-0705137.

Date submitted: 23 Nov 2009

Electronic form version 1.4